I Semestral Exam 2002-2003 B. Math. Hons. I year

Analysis - I

Date: 04-12-2002 Score: 100 Instructor: T.S.S.R.K. Rao

Answer all the questions.

- 1. Let $\{A_n\}$ be a sequence of countable sets. Show that $\cup A_n$ is a countable set. [10]
- 2. Show that $\Omega = \{p + iq : p, q \in Q\}$ is a countable dense set in \mathbb{C} . [10]
- 3. Let A be a closed set and C a closed and bounded set in R. Show that the set $A + C = \{a + c : a \in A, c \in C\}$ is a closed set. [12]
- 4. Let $\sum a_n < \infty$. Suppose $a_n > 0$ for all n. Show that $\sum a_n^2 < \infty$. Give an example to show that ' $a_n > 0$ for all n' cannot be dropped. [10]
- 5. Let $f: R \to R$ be such that for each $\alpha \in R$, $\{x: f(x) \geq \alpha\}$ and $\{x: f(x) \leq \alpha\}$ are both closed sets. Show that f is continuous. [12]
- 6. Let $f:(0,1)\to R$ be a differentiable function such that f'>0. Let $A\subseteq (0,1)$ be such that $\bar{A}\subseteq (0,1)$. Show that $f(\bar{A})=\overline{f(A)}$. [12]
- 7. Let $f:(a,b)\to R$ be differentiable. Show that f' satisfies the intermediate value property. [10]
- 8. If $f:[a,b] \to R$ is a bounded and Riemann integrable function, then show that |f| is also a Riemann integrable function. Give an example of a function f where |f| in Riemann integrable but f is not. [12]
- 9. Let $f:[0,1] \to [0,1]$ be a continuous function such that $\int f dx = 0$. Show that f(t) = 0 for all $t \in [0,1]$.